
Journal of Global Optimization18: 107–128, 2000.
© 2000Kluwer Academic Publishers. Printed in the Netherlands.

107

Finite Exact Branch-and-Bound Algorithms for
Concave Minimization over Polytopes

MARCO LOCATELLI1 and NGUYEN V. THOAI
Universitá degli Studi di Firenze,
Dipartimento di Sistemi e Informatica,
Via di S.Marta, 3-50139 Firenze
Italy;

University of Trier,
Department of Mathematics,
D-54286 Trier, Germany

(Received 26 January 1998; accepted in revised foem 18 February 2000)

Abstract. In this paper simplicial branch-and-bound algorithms for concave minimization problems
are discussed. Some modifications of the basic algorithm are presented, mainly consisting in rules to
start local searches, introduction of cuts and updates of the original objective function. While some
of these tools are not new in the literature, it is the first time, to the authors’ knowledge, that they are
used to guarantee the finiteness of a simplicial branch-and-bound approach.

Key words: Concave minimization problems, Branch-and-bound, Local searches, Concavity cuts.

1. Introduction

In this paper the problem of minimizing a concave function over a polytope is
considered. The statement of the problem is the following

min f (x)

x ∈ P, (1.1)

whereP = {x ∈ Rn : Ax ≤ b}, A = (a1, . . . , am)
T ∈ Rm×n, b ∈ Rm,

is a full-dimensional polytope, andf is a concave function overRn. In what
follows the optimal value of (1.1) will be denoted byf ∗, while its solution set
{x ∈ P : f (x) = f ∗} will be denoted byX∗(f, P). It is also assumed that
no constraint definingP is redundant. Even if it is known that at least one op-
timal solution of the problem is one of the vertices ofP , this is a well known
NP-hard problem even when the objective function and the feasible region have
some special forms (e.g. quadratic over a hypercube, see [13]). Extensive surveys
about the theoretical and algorithmic aspects of this problem together with some
of its applications are given in [3, 6, 8, 9 and 12]. The algorithms for its solution

108 MARCO LOCATELLI AND NGUYEN V. THOAI

are generally subdivided in three main classes: enumerative methods, successive
approximation methods and branch-and-bound methods. While algorithms from
the first two classes can often be proven to return an optimal solution after finitely
many iterations by exploring, in the worst case, all the vertices ofP , the same is
not generally true for branch-and-bound methods, which, on the other hand, have
proven to work well in practice. Branch-and-bound methods often only guarantee
to be finite for computing anε-optimal solution. While it is known that ifε is
smaller than the difference between the values off at the best and the second best
vertex, then a vertexx0 which isε-optimal is a global optimal solution, the choice
of ε turns out to be a critical one: ifε is large, then few iterations are needed but the
accuracy of the solution may be poor, while ifε is small, many iterations may be
required. In Section 6 the dependency of the performance on the required accuracy
is shown through some examples.

Some finite exact algorithms in the field of branch-and-bound methods for con-
cave optimization have been appeared in the literature, for example [4], with the
so called END process for conical branch-and-bound algorithms, [14] in the field
of rectangular branch-and-bound algorithms for separable concave functions, [1, 2,
10 and 15] in the field of simplicial branch-and-bound algorithms.

In this paper modifications of convergent simplicial algorithms in order to make
them finite are proposed. In Section 2 a brief introduction of simplicial branch-and-
bound algorithms is given. In Section 3 some of the modifications mentioned above
are introduced. The basic idea is to combine rules to decide whether to start local
searches with the introduction of cuts in order to enforce finiteness of simplicial
algorithms which have only been proven to be convergent. Since the finiteness
proof relies on an assumption which can not be guaranteed to hold for all possible
concave problems, in Section 4 conditions under which the assumption certainly
holds are introduced. Moreover, possible ways to exploit the information collected
by the algorithm in order to guarantee finiteness for general concave functions
through updates of the objective function, are discussed. All that leads to the in-
troduction, in Section 5, of a new finite algorithm for general concave functions,
where also the objective function may be modified during the execution of the
algorithm, but only when this is strictly necessary in order to ensure finiteness.
Finally, in Section 6, some preliminary computational experiments are presented.

2. Simplicial algorithms for concave optimization

Let

S = [v0, . . . , vn] = {x : x =
n∑
j=0

λjvj ,

n∑
j=0

λj = 1, λj ≥ 0, j = 0, . . . , n}

denote then-simplex generated by the affinely independent vectorsvi ’s. The gen-
eral scheme of a simplicial branch-and-bound algorithm is the following.

FINITE EXACT BRANCH-AND-BOUND ALGORITHMS 109

ALGORITHM 1
1. Choosex ∈ P , ε ≥ 0. LetUB = f (x).
2. Construct a simplexS0 ⊃ P . SetP = {S0} andM = P .
3. For allS = [v0, . . . , vn] ∈ P solve

β(S;P) = min
n∑
i=0

λif (vi)

n∑
i=0

λivi ∈ P (2.2)

n∑
i=0

λi = 1

λi ≥ 0.
Given an optimal solution(λ0, . . . , λn) of (2.2), letω(S) =∑n

i=0 λivi .
4. SetUB = min{UB,minS∈P {f (ω(S))}}.
5. In M delete all simplicesS such thatβ(S;P) ≥ UB − ε (fathoming rule).

6. LetR be the collection of remaining simplices. IfR = ∅, then stop:UB is an
ε−optimal value, i.e.

UB ≤ f ∗ + ε.

7. Select the simplexS∗ = [v∗0, . . . , v∗n] ∈ R, S∗ ∈ arg min{β(S;P) : S ∈ R}.
8. According to a given rule, to be discussed below, subdivideS∗ using a point
x∗ ∈ S∗, x∗ = λ∗0v∗0 + · · · + λ∗nv∗n, λ∗i ≥ 0, i = 0, . . . , n and

∑n
i=0 λ

∗
i = 1.

Then we obtain fromS∗ a new setP ∗ of simplices such that

S ∈ P ∗

m

∃ i, 0≤ i ≤ n : λ∗i > 0,

S = [v∗0, . . . , v∗i−1, x
∗, v∗i+1, . . . , v

∗
n].

9. SetM = R ∪P ∗ \ {S∗} andP = P ∗. Go back to Step 3.

The deletion of simplices in Step 5 is a consequence of the fact that the objective
function of Problem (2.2) is the convex envelope off over the simplexS so that
β(S;P) is a lower bound of the optimal value off over S ∩ P . The choice of
the rule to subdivide a simplex in Step 8 is a critical one (see also [17]). Classical
subdivision rules are

110 MARCO LOCATELLI AND NGUYEN V. THOAI

Bisection which was first introduced in [5] for simplicial algorithms. It consists in
subdividing the selected simplexS∗ by using the midpoint of one of its longest
edges.

ω-subdivision , which was first introduced in [16] for conical algorithms. It con-
sists in subdividing the selected simplexS∗ using the pointω(S∗) in Step
8.

Typically ω-subdivision seems to be a more natural choice with respect to bisec-
tion. The algorithm based only on bisection has been proven to be finite forε > 0,
and, consequently, convergent forε = 0. Some algorithms have been introduced
which combine bisections andω-subdivisions. These are the so called normal al-
gorithms, first introduced in [18] for conical algorithms, and lately extended to
simplicial algorithms. They have been proved to be convergent forε = 0.

For all the above mentioned algorithms, no proof of finiteness has been given
for ε = 0, and, actually, for the algorithm based only on bisections the observation
below proves that the algorithm is not finite. That justifies the search for possible
modifications of Algorithm 1, which will be presented in next sections, in order to
get a finite exact algorithm.

OBSERVATION 1 Algorithm 1 employing bisections does not terminate in a finite
time forε = 0.

Proof. Consider the two-dimensional simplexS = [(0,0), (−1,1), (−2,0)]
and the two-dimensional polytopeP = S ∩ {(x1, x2) : x2 + ρx1 ≥ 0} for some
ρ ∈ (0,1). Note thatρ ∈ (0,1) implies that P is nonempty and full-dimensional,
and, moreover, in the segment with extreme points(−2,0) and (0,0), only the
point (0,0) belongs toP . Let the initial simplexS0 coincide withS. It can be
seen that, independently from the objective function, the algorithm employing
only bisections generates a nested sequence{Sj } of simplices such that for any
nonnegative integeri

S2i =
[
(0,0),

(
− 1

2i−1
,0

)
,

(
− 1

2i
,

1

2i

)]
,

and

S2i+1 =
[
(0,0),

(
− 1

2i
,0

)
,

(
− 1

2i
,

1

2i

)]
.

Let us consider the following objective function

f (x1, x2) = M min{x2+ ρx1,0} + g(x1, x2),

whereM is a positive constant andg is a concave function (possibly strictly con-
cave) with the following properties

∀ (x1, x2) ∈ P \ (0,0) g(x1, x2) > 0 and g(0,0) = 0. (2.3)

FINITE EXACT BRANCH-AND-BOUND ALGORITHMS 111

and

| ∂g(0,0)
∂xi

|≤ η i = 1,2,

for someη > 0. A function satisfying these properties is the following

g(x1, x2) = η − η
2
(x1+ 1)2− η

2
(x2 − 1)2.

In view of the concavity ofg, it follows that

∀ (x1, x2) ∈ S g(x1, x2) ≤ η(x2− x1). (2.4)

We note that for any(x1, x2) ∈ P it holds that min{x2 + ρx1,0} = 0, so that, in
view of (2.3),f ∗ = 0. In order to prove that the algorithm is not finite, we will
show that the solution of the linear subproblems (2.2) over the simplicesSj ’s, is,
for anyj ≥ 0, lower than 0. We only give the proof for a simplexS2i+1, wherei is
a nonnegative integer. The proof for the other simplices is completely analogous.
Let q = 1

2i . The objective function of the linear subproblem (2.2) is the following

λ1f (0,0)+ λ2f (−q,0)+ λ3f (−q, q) = −λ2Mρq + λ2g(−q,0) + λ3g(−q, q),
and, in view of (2.4), it can be bounded from above by

−q[λ2(Mρ − η)− 2λ3η]. (2.5)

Now consider the points(−q, λ3q) for λ3 ∈ [0,1]. We note that ifλ3 ≥ ρ, then
(−q, λ3q) ∈ P . Indeed,−ρq + λ3q ≥ 0 for anyλ3 ≥ ρ. Then, let us consider
the pointλ∗1 = 0, λ∗2 = 1− ρ andλ∗3 = ρ. The point is feasible for the linear
subproblem and, in view of (2.5), its objective function value is bounded from
above by

−q[(1− ρ)ρM − (1− ρ)η − 2ρη],
which is lower than 0 forM big enough, those implyingβ(S2i+1;P) < 0, as we
wanted to prove. 2

3. Modifications of the basic simplicial algorithms

In this section, two basic ideas, which have already been succesfully employed in
global optimization, are combined. The first one is to introduce a thresholdδ > 0
in order to decide when to apply a local search procedure, while the second idea is
the addition of cuts. Now letV (P) denote the vertex set of the polytopeP , and,
for a givenv ∈ V (P), let adj (v;P) ⊂ V (P) denote the set of vertices adjacent
to v in P . The local search procedure is denoted byLS(·;P). When applied to a

112 MARCO LOCATELLI AND NGUYEN V. THOAI

pointx ∈ P , it returns a local minimum vertex off overP . Here local minimality
is intended with respect to the vertex neighborhood of a vertex, i.e.v ∈ V (P) is a
local minimum if

f (v) ≥ f (v) ∀ v ∈ adj (v;P). (3.6)

Note that local vertex minimality is a stronger requirement with respect to the usual
local minimality. Indeed, (3.6) implies thatv is also a local minimum off in the
usual sense, but the opposite is not necessarily true.

The local search procedureLS consists of two phases.

Phase IGivenx ∈ P , a vertexw ∈ V (P) satisfyingf (w) ≤ f (x) must be found.
There are different possibilities to implement this phase. If a subgradientg ∈ ∂f (x)
is available, then the solutionw ∈ V (P) of the linear problem miny∈P gT y satisfies
the requirement. Otherwise, the following procedure can be employed.
1. Choose a directiond belonging to the null space of the active constraints inx.
2. Set

η1 = max{η : η ≥ 0, aj (x + ηd) ≤ bj , j = 1, . . . , m},
and

η2 = max{η : η ≥ 0, aj (x − ηd) ≤ bj , j = 1, . . . , m}.
3. Setx ∈ arg min{f (x + η1d), f (x − η2d)}.
4. If x ∈ V (P), then setw = x and returnw, otherwise go back to 1.

Since at each iteration the number of constraints active atx increases by at least
one, the procedure must stop in at mostm iterations.

Phase IIGivenw ∈ V (P) a vertexv ∈ V (P) satisfying (3.6) must be found. This
can be done by the following procedure which uses as a subroutine the neighbor
generation procedure also employed in [2].
1. Generate all the verticesadj (w;P) (neighbor generation procedure).
2. Ifw satisfies (3.6), then setv = w and returnv, otherwise choosez ∈ adj (w;P)

such thatf (z) < f (w), setw = z and go back to 1.
We underline at this point the difference between the use of the neighbor gener-

ation procedure in our paper, and the use of the same procedure in [2]. In our paper
the neighbor generation procedure is used as a subroutine of Phase II of the local
search. In [2] it is used in an essentially different way, namely it is employed to
generate a collection of vertices ofP with respect to which radial subdivisions are
performed. While the finiteness result in [2] appears to strongly rely on the fact that
the simplices are subdivided with respect to vertices ofP , the same is not true for
our algorithms, where it will be shown that finiteness derives from the introduction
of cuts and, in some cases discussed in Section 5, from updates of the objective
function.

FINITE EXACT BRANCH-AND-BOUND ALGORITHMS 113

We also recall here the concept ofγ -concavity cut. Letv be a local minimum
of f overP in the sense mentioned above, and letf (v) = γ . A γ -concavity cut is
an inequalityπ(x − v) ≥ 1 such that

x ∈ P, π(x − v) ≤ 1 ⇒ f (x) ≥ γ. (3.7)

We do not discuss here how to compute aγ -concavity cut and we refer to the
existing literature (see e.g. [9]).

Before describing the modified algorithm some notation, employed in what
follows, is introduced.

− β(Pk) = minS∈R β(S, Pk), i.e.β(Pk) is a lower bound for Problem (1.1) with
feasible regionPk (the indexk for the polytope is explained below).

− Given the predefined parameterδ > 0

Y
f

k = {ω(S) | S ∈ P : f (ω(S)) ≤ UB + δ}, (3.8)

is the set of points at which local searches will be started at iterationk.
−

LM
f

k = {LS(y, Pk) : y ∈ Y fk }.,
is the set of local minima overPk detected by the algorithm at iterationk.

− M
f

k = ∪ki=1 LM
f

i is the set of all local minima detected by the algorithm up
to iterationk.

− GM
f

k = {y ∈ Mf

k : f (y) = UB} is the set of detected local minima whose
value coincide with the best observed one.

Algorithm 1 is then modified in the following way.

ALGORITHM 2

1. Choosex ∈ P , δ > 0. Determinev = LS(x;P) ∈ V (P). LetUB = f (v). Set
M

f

0 = GMf

0 = {v}, P0 = P andk = 0.

2. Construct a simplexS0 ⊃ P . SetP = {S0} andM = P .

3. For allS = [v0, . . . , vn] ∈ P solve

β(S, Pk) = min
n∑
i=0

λif (vi)

n∑
i=0

λivi ∈ Pk
n∑
i=0

λi = 1

λi ≥ 0.

114 MARCO LOCATELLI AND NGUYEN V. THOAI

Given an optimal solution(λ0, . . . , λn) of (2.2), letω(S) =∑n
i=0 λivi .

4a. Compute the setY fk . If Y fk = ∅ then setPk+1 = Pk and go to Step 5; otherwise
go to Step 4b.

4b. Compute the setLMf

k and letgk = min
y∈LMf

k
f (y); if gk > UB, then set

Pk+1 = Pk and go to Step 5; otherwise ifgk < UB setPk = P andUB = gk.
Go to Step 4c.

4c. If UB ≤ β(Pk) then stop:UB is the optimal value; otherwise go to Step 4d.

4d. Selectv ∈ GM
f

k ∩ V (Pk), compute theUB-concavity cutπ(x − v), and
define a new polytopePk+1 ⊂ Pk by adding to the description ofPk the
UB-concavity cut, i.e.

Pk+1 = Pk ∩ {x ∈ Rn : π(x − v) ≥ 1}. (3.9)

4e. Recompute the boundsβ(S, Pk+1) and updateβ(Pk+1) accordingly

5. In M delete all simplicesS such thatβ(S, Pk+1) ≥ UB (fathoming rule).

6. Let R be the collection of remaining simplices. IfR = ∅, then stop:UB is an
optimal value.

7. Select the simplexS∗ = [v∗0, . . . , v∗n] ∈ R, S∗ ∈ arg min{β(S, Pk+1) : S ∈ R}.
8. According to a given rule subdivideS∗ using a pointx∗ ∈ S∗, x∗ = λ∗0v∗0+· · ·+

λ∗nv∗n, λ∗i ≥ 0, i = 0, . . . , n and
∑n

i=0 λ
∗
i = 1. Then we obtain fromS∗ a new

setP ∗ of simplices such that

S ∈ P ∗
m

∃ i, 0≤ i ≤ n : λ∗i > 0,

S = [v∗0, . . . , v∗i−1, x
∗, v∗i+1, . . . , v

∗
n].

9. SetM = R ∪P ∗ \ {S∗} andP = P ∗. Setk = k + 1 and go back to Step 3.

The following remarks about these modifications hold.

REMARK 1 In Step 4b it is basically stated that local searches are started from
points whose distance from the current upper boundUB is below the thresholdδ.
The idea is that in order to enforce finiteness of the method one possibly has to
detect (by local searches in Step 4b) and cut off all global minimum vertices (see
Step 4d). On the other hand it is desirable to keep as low as possible the number of
cuts.

FINITE EXACT BRANCH-AND-BOUND ALGORITHMS 115

REMARK 2 Each time the polytopePk is restricted to a new polytopePk+1 in
Step 4d, it follows, in view of the update of the lower boundsβ(S, Pk+1) for each
S ∈ R, that the boundβ(Pk+1) is now a lower bound for the problem

min f (x)

x ∈ Pk+1, (3.10)

with optimal value denoted byf ∗k+1. On the other hand, the upper boundUB
is valid for the original problem. Essentially the algorithm switches to solve the
restricted Problem (3.10) but keeps the original upper bound.

REMARK 3 If Update (3.9) of the feasible region is employed, it immediately
follows from the definition of concavity cut that the selected vertexv of Pk does
not belong toPk+1, and that no point inPk with function value lower thanUB (if
any exists) is cut off (see (3.7)). In particular all the newly created vertices ofPk+1

have function value greater than or equal toUB, i.e.

∀ v ∈ V (Pk+1) \ V (Pk) f (v) ≥ UB. (3.11)

Now an assumption, under which the finiteness of the modified algorithm will be
proved, is introduced. The assumption does not always necessarily hold, but in the
next section some conditions under which it is guaranteed to hold will be presented.

ASSUMPTION 1 If Update (3.9) of the feasible region is employed, then all the
newly created vertices have function value greater thanf ∗, i.e.

∀ v ∈ V (Pk+1) \ V (Pk) f (v) > f ∗.

We note that, in view of (3.11), Assumption 1 certainly holds whenUB > f ∗, but
for UB = f ∗ the assumption is not guaranteed to hold.

Next we introduce the concept of a normal simplicial subdivision process (see
also [9] for a detailed presentation).

DEFINITION 1 Given a polytopePk, a simplicial subdivision is normal if for any
infinite nested sequence{St} of simplices generated by it, the following is satisfied

lim t→∞f (ω(St))− β(St , Pk) = 0. (3.12)

Theorem VII.8 in [9] proves that any simplicial algorithm employing a normal
subdivision rule is convergent.

First we prove the following proposition.

PROPOSITION 1 If a normal subdivision strategy is employed, then Algorithm 2
detects a global optimum after a finite number of iterations.

116 MARCO LOCATELLI AND NGUYEN V. THOAI

Proof. The current valueUB is always attained at least at one vertex ofP .
Indeed, in view of (3.11), each time the polytope is modified in Step 4d, the newly
created vertices must have a function value not smaller thanUB. Therefore, either
UB = f ∗ and we are done, or

UB − f ∗ ≥ min
v∈V (P)\X∗(f,P)

f (v)− f ∗ = 1f.

Condition (3.12) guarantees that there exists an infinite nested sequence of sim-
plices{St} such that, possibly by passing to a subsequence

f (ω(St))→ f ∗,

i.e. for t big enoughf (ω(St))−f ∗ < 1f so thatf (ω(St)) < UB, and, according
to (3.8), a local search will be started and a vertexv ∈ V (P) with f (v) = f ∗ will
be detected. 2
It is also possible to prove the following proposition, stating that, under Assump-
tion 1, the algorithm only modifies the original polytope in Step 4d a finite number
of times.

PROPOSITION 2 If Assumption 1 holds, Step 4d of Algorithm 2 is entered at most
a finite number of times.

Proof. In view of Proposition 1, we only need to prove that Step 4d is entered a
finite number of times whenUB = f ∗. Note that, from Step 4b, Step 4d is entered
at iterationk only if at least one local minimum overPk with function value equal
to f ∗ is detected. In view of Assumption 1 all local minima overPk with function
value equal tof ∗ are vertices ofV (P). Indeed, Assumption 1 guarantees that all
the newly created vertices must have a function value greater thanf ∗. Then, each
time Step 4d is entered, at least onev ∈ V (P) is cut off, and, in view of the finite
cardinality ofV (P), Step 4d is entered a finite number of times. 2

The following theorem states the finiteness of Algorithm 2 when a normal
subdivision strategy is employed.

THEOREM 1 If in Algorithm 2 a normal subdivision strategy is employed and
Assumption 1 holds, then it terminates after finitely many iterations.

Proof.From Proposition 2 we see that the polytopePk can be changed at most
a finite number of times, i.e.∃ K such that∀ k ≥ K : Pk = PK . Suppose that
Algorithm 2 is infinite. At first we also assume that

V (P) ∩X∗(f, P) ∩ PK = ∅, (3.13)

i.e. all the global minimum vertices have been already cut off. Note that we must
haveUB = f ∗ because at least one global minimum vertex has certainly been
detected if it has been cut off. Then it must hold thatf ∗K > f ∗ = UB. Indeed,

FINITE EXACT BRANCH-AND-BOUND ALGORITHMS 117

f ∗K is attained at one local minimum vertexv of PK and from Assumption 1 it
follows thatv ∈ V (PK)\V (P) impliesf (v) > f ∗, while, if v ∈ V (PK)∩V (P) it
follows from (3.13) thatf (v) > f ∗. From Remark 2 we note that the lower bounds
computed by the algorithm are, after the updating in Step 4e, lower bounds forf ∗K
and in view of the convergence of the basic algorithm, when a normal subdivision
strategy is employed, we must haveβ(Pk) ↑ f ∗K ask→∞, i.e. at some iterationk
it holds thatUB < β(Pk), which contradicts the infinity of the algorithm (see Step
4c).

Next, we assume that there exists at least a global minimum vertex which is
never cut off, i.e. it belongs toPK . But, again, in view of the convergence of the
algorithm, we must haveβ(Pk) ↑ f ∗K = f ∗. Moreover, in view of Condition
(3.12), there exists an infinite nested sequence of simplices{St} such that, possibly
by passing to a subsequence

f (ω(St))→ f ∗,

i.e. according to (3.8) a local search will be started and a vertexv of PK will be
detected and cut off in Step 4d, thus contradicting the fact thatPk = PK for any
k ≥ K. 2

It must be underlined at this point that the combination of branch-and-bound
approaches with concavity cuts is not new in the literature. However, to the authors’
knowledge no combination of concavity cuts and branch-and-bound approaches
has been proposed in order to obtain finite algorithms.

4. Conditions under which finiteness can be ensured

In this section we introduce a property under which Assumption 1 is guaranteed to
hold and, consequently, the finiteness of Algorithm 2 is ensured.

PROPERTY 1 The global optimum valuef ∗ is only attained at vertices of the
polytope, i.e.

X∗(f, P) ⊆ V (P).

PROPOSITION 3 If Property 1 holds, then Algorithm 2 is finite.
Proof. In view of Theorem 1, we only need to prove that Assumption 1 holds.

But this immediately follows from the observation thatv ∈ V (Pk+1) \ V (Pk)
impliesv ∈ P \ V (P), so that, in view of Property 1,f (v) > f ∗. 2

We note that the following remark holds.

REMARK 4 If f is strictly concave, then Property 1 holds. Therefore, Algorithm
2 is finite if applied to strictly concave functions.

118 MARCO LOCATELLI AND NGUYEN V. THOAI

We are now interested in what to do in more general cases. Property 1 can not,
in general, be checked in advance, so that it is not possible to guarantee in advance
the finiteness of the algorithm. Nevertheless it is important to note that at each
iterationk the setGMf

k , containing all the detected points whose value is equal to
UB, is available. If, at iterationk, it holds thatGMf

k 6⊆ V (P), then the algorithm
should generate a WARNING, meaning that Property 1 may not hold. Since we do
not know, during the execution of the algorithm, whetherUB = f ∗ or not, we are
never completely guaranteed that Property 1 does not hold, but the warning acts
like an alarm saying that the algorithm may experience difficulties.

Therefore, now the question is what to do when a warning arises. In order to
see that, we introduce a function which can be employed to modify the original
objective function. LetM = {1, . . . , m} and

g(x) = min
J⊆M, |J |=n

∑
j∈J
(bj − ajx).

The functiong is concave. Moreover, it holds that

∀ x ∈ P, g(x) ≥ 0. (4.14)

We note that at a given pointx, g is equal to the sum of the lowestn values of the
slack variables in the constraints definingP . Therefore, the following procedure
can be employed to evaluateg.
1. Compute the slack variables at each constraint, i.e.yi = bi − aix for any
i ∈ M (note that the function is often evaluated at the solution of the linear
subproblems, so that the value of the slack variables may be immediately
available).

2. Order theyi ’s in a nondecreasing way:{yi1, . . . , yim}.
3. Returng(x) =∑n

j=1 yij .
Now we introduce an observation which will be employed in what follows.

OBSERVATION 2 Given a nonempty polytopeP = {x ∈ Rn : aix ≤ bi, i ∈ M},
then for somev ∈ P it holds that

v ∈ V (P) ⇔ n independent constraints are active inv. (4.15)

Next we introduce a new proposition, proving that if all the vertices at which the
global optimum value is attained are nondegenerate, then Algorithm 2 applied to
the problem with objective functionf (x)+ g(x) is finite and returns a solution of
the original problem.

PROPOSITION 4 If

v ∈ V (P) ∩X∗(f, P) ⇒ v nondegenerate, (4.16)

FINITE EXACT BRANCH-AND-BOUND ALGORITHMS 119

then

X∗(f + g, P) ⊆ X∗(f, P), (4.17)

and the concave functionf (x)+ g(x) satisfies Property 1.
Proof. First we recall thatg(x) ≥ 0 for any x ∈ P . Moreover, in view of

Observation 2, it holds that

x ∈ V (P) ⇒ g(x) = 0.

Therefore, the global optimum value of the problem with objective functionf + g
is still f ∗ and for anyx ∈ P \X∗(f, P) it holds thatf (x)+ g(x) > f ∗, i.e. (4.17)
is true. We note that the nondegeneracy assumption (4.16) on the global optimum
vertices implies that

∀ x ∈ V (P) ∩X∗(f, P) there are exactlyn constraints active atx. (4.18)

Now, by contradiction, we assume that Property 1 is not satisfied, i.e.∃ y ∈ P \
V (P) such thatf (y) + g(y) = f ∗. This impliesg(y) = 0. Sincey 6∈ V (P)
there existv1, . . . , vp ∈ V (P), p ≥ 2 such thaty belongs to the convex hull of
the pointsv1, . . . , vp. Sinceg(y) = 0, then there are at leastn constraints active
at y, which implies that there are at leastn + 1 constraints active atv1, . . . , vp.
Moreover, the concavity off and the optimality off ∗ imply thatf (v1) = · · · =
f (vp) = f ∗, but then (4.18) is contradicted. 2
Therefore, if we substitute the original objective function withf (x) + g(x) and
(4.16) holds, Algorithm 2 is finite. As with Property 1, (4.16) can not be checked
in advance. But we can still profit from the knowledge of the setGM

f+g
k by in-

troducing a WARNING whenGMf+g
k 6⊆ V (P). The question is, again, what to

do if the algorithm has produced a warning. In order to see that, let us assume that
neither Property 1 nor (4.16) hold. Instead of adding tof the functiong, we add
the following function

g̃(x) = min
J⊂M, |J |=n, (aj , j∈J, independent)

∑
j∈J
(bj − ajx).

The functiong̃ is concave,∀ x ∈ P g̃(x) ≥ 0, and, in view of Observation 2,
g̃(x) = 0 ⇔ x ∈ V (P). With a proof completely analogous to that of Proposition
4, it can be seen that

X∗(f + g̃, P) ⊆ X∗(f, P),
and the concave functionf (x) + g̃(x) satisfies Property 1. Therefore, Algorithm
2 applied to the problem with objective functionf + g̃ is finite. Now we need a
procedure to compute the functiong̃. We note that the set of vectors{a1, . . . , am}
forms a so called matric matroid (see, e.g., [11, page 288]). Therefore, the com-
binatorial optimization problem which definesg̃(x) can be solved by the following
greedy procedure.

120 MARCO LOCATELLI AND NGUYEN V. THOAI

1. Compute the slack variables at each constraint, i.e.yi = bi−aix for anyi ∈ M.
2. Order theyi ’s in a nondecreasing way:{yi1, . . . , yim}.
3. setE = ∅ andt = 1
4. while(| E |< n) do
{ if the vectors{aj , j ∈ E ∪ {ait }} are linearly independent, setE = E ∪ {ait };
sett := t + 1 }.

5. Returng̃(x) =∑j∈E yj .
The computation of the functioñg is more expensive than the computation of the
functiong because at each step we need to check whether a newly selected vector
is linearly independent with respect to the previously selected vectors, which can
be done as follows. We start with an initial basic matrixB = I whereI is the
n × n identity matrix, and with the nonbasic matrixN = A. It is then possible
to implement the computation ofg̃ by moving out of the basis the columns of the
identity matrix and moving into the basis some columns ofA. More precisely, step
4. of the procedure for the computation ofg̃ can be implemented as follows.

4. while (| E |< n) do
{ if the vectorait can be moved into the current basis in place of one of the
columns of the identity matrix which still belong to the basis then:

− update the basis accordingly and perform the corresponding pivot oper-
ation;

− setE = E ∪ {ait };

sett := t + 1 }
Therefore, we notice that the computation ofg̃ reduces to the execution ofn

pivot operations. However, as it will be seen, we will try to avoid as much as
possible to switch to functionf + g̃. Indeed, in the following section all the
observations collected in this section will be exploited in order to build a new
algorithm which will be proved to be finite when applied to any concave function.
In the algorithm not only the feasible polytopeP is modified, but also the objective
functionf . The algorithm runs in the same way as Algorithm 2 until some special
event occurs (the warnings mentioned above). In such cases the objective function
is modified, but these modifications are introduced only when strictly necessary.

5. A finite exact branch-and-bound algorithm

We immediately give the description of the algorithm.

ALGORITHM 3

1. Choosex ∈ P , δ > 0. Determinev = LS(x;P) ∈ V (P). LetUB = f (v). Set
k = 0,P0 = P andh = f . SetMh

0 = GMh
0 = {v}.

FINITE EXACT BRANCH-AND-BOUND ALGORITHMS 121

2. Construct a simplexS0 ⊃ P . SetP = {S0} andM = P .

3. For allS = [v0, . . . , vn] ∈ P solve

β(S, Pk, h) = min
n∑
i=0

λih(vi)

n∑
i=0

λivi ∈ Pk
n∑
i=0

λi = 1

λi ≥ 0.

Given an optimal solution(λ0, . . . , λn) of (2.2), letω(S) =∑n
i=0 λivi .

4a. Compute the setY hk . If Y hk = ∅ then setPk+1 = Pk and go to Step 5; otherwise
go to Step 4b.

4b. Compute the setLMh
k and letgk = miny∈LMh

k
h(y); if gk > UB, then set

Pk+1 = Pk and go to Step 5; otherwise go to Step 4c.

4c. If gk = UB go to step 4c. bis. Otherwise (gk < UB) seth = f , Pk = P and
UB = gk . If UB ≤ β(Pk, h) then stop:UB is the optimal value; otherwise
go to Step 4d.

4c. bis If GMh
k ⊆ V (P), then go to step 4d. Otherwise

− if h = f , seth = f + g; if GMh
k 6⊆ V (P) seth = f + g̃

− if h = f + g, seth = f + g̃.

(Note that forh = f + g̃ it certainly holds thatGMh
k ⊆ V (P)).

If GMh
k ∩ V (Pk) 6= ∅ go to Step 4d., otherwise setPk+1 = Pk and go to Step

4e.

4d. Selectv ∈ GMh
k ∩ V (Pk) (note that it holdsv ∈ V (P)) and compute theUB-

concavity cutπ(x−v) (generated by using, indifferently, the original function
f or the current functionh), and define a new polytopePk+1 ⊂ Pk by adding
to the description ofPk theUB-concavity cut, i.e.

Pk+1 = Pk ∩ {x ∈ Rn : π(x − v) ≥ 1}.

4e. Recompute the boundsβ(S, Pk+1, h) and updateβ(Pk+1, h) accordingly

122 MARCO LOCATELLI AND NGUYEN V. THOAI

5. In M delete all simplicesS such thatβ(S, Pk+1, h) ≥ UB (fathoming rule).

6. Let R be the collection of remaining simplices. IfR = ∅, then stop:UB is an
optimal value.

7. Select the simplexS∗ = [v∗0, . . . , v∗n] ∈ R, S∗ ∈ arg min{β(S, Pk+1, h) : S ∈
R}.

8. According to a given rule subdivideS∗ using a pointx∗ ∈ S∗, x∗ = λ∗0v∗0+· · ·+
λ∗nv∗n, λ∗i ≥ 0, i = 0, . . . , n and

∑n
i=0 λ

∗
i = 1. Then we obtain fromS∗ a new

setP ∗ of simplices such that

S ∈ P ∗
m

∃ i, 0≤ i ≤ n : λ∗i > 0,

S = [v∗0, . . . , v∗i−1, x
∗, v∗i+1, . . . , v

∗
n].

9. SetM = R ∪P ∗ \ {S∗} andP = P ∗. Setk = k + 1 and go back to Step 3.

The following theorem proves the finiteness of Algorithm 3.

THEOREM 2 If f is concave and a normal subdivision strategy is employed, then
Algorithm 3 is finite.

Proof.The proof of this finiteness result is subdivided into three parts.

The first part shows thatUB = f ∗ after a finite number of iterations. By con-
tradiction we assume that for an infinite number of iterations bothUB > f ∗ and
h are not updated. In view of the finite cardinality ofV (P) the number of cuts
introduced in Step 4d. is finite. Therefore,∃ K1 : ∀ k ≥ K1, Pk = PK1, and,
after iterationK1, the algorithm reduces to Algorithm 2 applied to problems with
objective functionh and feasible region given by the intersection ofPK1 with each
non fathomed simplex into which the initial simplex has been subdivided up to
iterationK1. Then, in view of Proposition 1, after a finite number of iterations
UB = minx∈PK1

h(x) = f ∗, which contradicts the fact thatUB is never updated.
Therefore, after a finite number of iterations, eitherUB is updated, orh is updated.
Since in the latter case, whileUB is not updatedh can be updated at most twice in
Step 4c.bis, it follows that after a finite number of iterationsUB > f ∗ is updated
with the value off at a new vertexv ∈ V (P). In view of the finite cardinality of
V (P), after a finite number of iterationsUB = f ∗.
In the second part we prove that, whileUB = f ∗, if h = f or h = f + g, then
after a finite number of iterations either the algorithm stops or the functionh is
updated. By contradiction we assume that, whileUB = f ∗, the algorithm runs for
an infinite number of iterations without updatingh = f or h = f + g. Again in

FINITE EXACT BRANCH-AND-BOUND ALGORITHMS 123

view of the finite cardinality ofV (P) the number of cuts introduced in Step 4d. is
finite. Therefore,

∃ K2 : ∀ k ≥ K2, Pk = PK2, (5.19)

and, after iterationK2, the algorithm reduces to Algorithm 2 applied to problems
with objective functionh and feasible region given by the intersection ofPK2 with
each nonfathomed simplex into which the initial simplex has been subdivided up
to iterationK2. Then, in view of the convergence of Algorithm 2 under the normal
subdivision strategy, two cases are possible.

Case 1.for somek ≥ K2, β(Pk, h) ≥ f ∗ so that the algorithm stops, which is a
contradiction.

Case 2.after a finite number of iterations we start a local search leading to a point
y ∈ P : f (y) = f ∗; then there are two possible subcases

Case 2a.y ∈ V (P): then a new cut is introduced in Step 4d. and (5.19) is contra-
dicted.

Case 2b.y 6∈ V (P): thenh is updated in Step 4c.bis, which is also a contradiction.

Thus, in each possible case we are lead to a contradiction.

The third and final part of the proof shows that, whenh = f + g̃ andUB = f ∗, the
algorithm stops after a finite number of iterations. The proof is done by contradic-
tion and is completely analogous to that of the second part with the only difference
that Case 2b never holds becausef + g̃ satisfies Property 1. 2
We note that the algorithm tries to exploit as much as possible the information
contained in the setGMh

k , in order to introduce modifications with respect to
Algorithm 2 only when this is strictly necessary to ensure finiteness. Indeed, Al-
gorithm 3, when applied to strictly concave functions, never modifies the objective
function, as the following observation proves.

OBSERVATION 3 If f is strictly concave, then Algorithm 3 coincides with Al-
gorithm 2.

Proof.We only need to prove that the conditionGMf

k ⊆ V (P) is always satis-
fied if f is strictly concave. By contradiction we assume that, at some iterationk,
there existsv ∈ GMf

k \ V (P). Note that the local vertex minimality ofv implies
that

∀ w ∈ adj (v;Pk) f (w) ≥ UB. (5.20)

From v ∈ V (Pk), it follows that v ∈ (v1, v2), wherev1, v2 ∈ V (Ph) for some
h < k, and there exists aUB-concavity cutπ(x − v′) ≥ 1, wherev′ ∈ V (Ph) and

π(v1− v′) < 1 π(v2− v′) > 1 π(v − v′) = 1.

124 MARCO LOCATELLI AND NGUYEN V. THOAI

Note that it must holdv2 ∈ adj (v;Pk). Moreover, in view of (3.7),f (v1) ≥ UB,
and the strict concavity off implies

UB = f (v) > min{f (v1), f (v2)} = f (v2),

so that (5.20) is contradicted. 2
We also recall that any branch-and-bound algorithm has two phases. In phase I the
global optimum value is searched for (UB > f ∗). In phase II optimality of the
current incumbent is checked (UB = f ∗). Of course, it is not possible, during the
execution of the algorithm, to know in which of the two phases we are, but it is
typical for branch-and-bound algorithms to have a phase II longer than phase I.
What we note is that if Property 1 is satisfied, then during phase I the objective
function may be modified, but during phase II the objective function is equal tof

and is never changed. If Property 1 is not satisfied but (4.16) holds, then in phase II
the algorithm only modifiesf into f + g and then it does not change it any more.
Therefore, at least in phase II, multiple modifications of the objective function
are introduced only when none of the above mentioned conditions and properties
holds.
We finally underline that it is possible to consider a variant of the above algorithm
in which during the computations not all the cuts are kept in memory but only the
last T of them, whereT is some predefined positive integer. This may have the
disadvantage that the same vertex is cut more than once, but, on the other hand,
it avoids solving at each iteration linear subproblems with, possibly, a very high
number of constraints. A good balance between the computational loss of time due
to repeated cuts and the computational gain of time due to smaller linear subprob-
lems has to be found. It can be seen that if Property 1 holds, this modification does
not affect the finiteness result for Algorithm 2, at least when exhaustive (shrinking
to a point) subdivision processes are used. We do not give a detailed proof of this
fact here, but we note that exhaustiveness implies that when the iteration counter
k is big enough, all the simplicesS ∈ M containing a global optimum vertexv
have a small diameter. As soon as the vertex is detected through a local search, the
concavity cut also cuts off all these simplices. In particular, for each of them the
feasible region of the linear subproblem (2.2) becomes empty and, consequently,
the fathoming rule excludes them from further consideration.

6. Numerical experiments

In the numerical computations the basic simplicial algorithm, Algorithm 1, em-
ploying the bisection subdivision strategy, has been compared with Algorithm 2,
employing the same subdivision strategy. The following objective functions, taken
from the literature (see [2 and 7]), have been considered:

f1(x) = − | x1 +
n∑
j=2

j − 1

j
xj | 32 ;

FINITE EXACT BRANCH-AND-BOUND ALGORITHMS 125

Table I. CPU times for problems with differ-
ent values ofn, different objective functions and
different accuracy

Obj.Func. n ε Alg. 1 Alg. 2

f2 5 10−1 0.48 0.07

f2 5 10−10 3.42 0.07

f2 6 10−1 2.67 0.07

f2 6 10−2 23.48 0.07

f2 6 10−10 153.82 0.07

f3 5 10−1 13.45 12.21

f3 5 10−4 17.80 12.37

f3 6 10−1 319.61 137.42

f3 6 10−2 444.09 141.28

f3 6 10−10 1213.67 146.70

f4 6 10−1 133.55 93.08

f4 6 10−10 346.02 93.11

f2(x) = − |
n∑
j=1

1

j
xj | log

1+ |
n∑
j=1

1

j
xj |

 ;

f3(x) = −3
n∑
j=1

x2
j + 2(

n−1∑
j=1

xjxj+1);

f4(x) = −(
n∑
j=1

x2
j) log(1+

n∑
j=1

x2
j),

We note that functionsf3, f4 are strictly concave. Therefore, Algorithm 3 performs
in the same way as Algorithm 2. Functionsf1, f2 are not strictly concave, but the
two algorithms still behave in the same way. Indeed, being these two functions in-
directly linear, it can be proved that the first local search detects the global optimum
and the first concavity cut eliminates the whole polytope. Therefore, after at most
one iteration Algorithm 2 stops for any possible accuracyε.

All computations have been performed on a SUN MICROSPARC II. Two dif-
ferent kinds of experiments have been carried out.

The first kind of experiments show through some examples the dependency of
the performance of the simplicial algorithm based on bisections from the choice
of the predefined accuracy and that the proposed modifications often seem to con-
siderably reduce this dependency, as it is intuitively clear in view of the finiteness

126 MARCO LOCATELLI AND NGUYEN V. THOAI

result. The results are presented in Table 1. The feasible region is the set[0,1]n.
The first column indicates the objective function used, the second one the value
of n, the third one the predefined accuracy and the fourth and fifth one the CPU
times respectively for Algorithms 1 and 2. It is interesting to note that, while the
results for the basic simplicial algorithms are strongly dependent on the choice of
the accuracy, the modified algorithm is almost independent from this choice.

The second kind of experiments, presented in the third subsection, is performed
on randomly generated problems. Feasible regions have been randomly generated
for different values of the number of variablesn and the number of constraintsm.
To each problem, nonnegativity constraints for the variables have been added. The
procedure employed to generate the random problems is the one presented in [10].
We do not report here the comparison between the two algorithms for the functions
f1 andf2 but we underline that while the modified algorithm is able to exploit
as much as possible the peculiar structure of these objective functions and stops
after at most one iteration, the basic simplicial branch-and-bound algorithm based
on bisections has not this ability and may perform quite badly. Indeed, for some
instances the basic algorithm did not stop after 500000 iterations and more than
9000 seconds of CPU time.

Also the computations with functionsf3 andf4, whose results are reported in
Tables 2 and 3, show that in most cases the modified algorithm outperforms the
original one. This is always true from the point of view of the maximum memory
requirements and the total number of iterations, which must necessarily hold, and
most of the times from the point of view of the required CPU times, which could
not be said in advance in view of the increased computational effort due to the
computation of cuts and the larger linear subproblems. Tables 2 and 3 report the
results obtained for the functionsf3 andf4. For each table the following notation
has been employed.

n denotes the dimension of the problem (varying between 5 and 9);

m denotes the number of constraints (varying between 8 and 16) without consid-
ering the nonnegative constraints;

T1 denotes the CPU times for Algorithm 1;

T2 denotes the CPU times for Algorithm 2;

M1 denotes the memory requirements, i.e. the maximum number of nodes in the
branch-and-bound tree, for Algorithm 1;

M2 denotes the memory requirements for Algorithm 2;

I1 denotes the total number of iterations for Algorithm 1;

FINITE EXACT BRANCH-AND-BOUND ALGORITHMS 127

Table II. CPU times, memory requirements and number of iterations
for functionf3

n m T1 T2 M1 M2 I1 I2

5 8 1.16 0.14 13 1 24 4

5 10 1.24 0.28 11 4 132 13

5 12 4.42 2.38 51 34 312 147

5 14 2.51 1.33 25 17 174 76

5 16 4.06 2.49 44 35 276 143

6 8 3.12 6.44 61 39 541 248

6 10 10.61 5.66 122 79 803 399

6 12 13.76 12.49 222 205 923 766

6 14 21.04 17.33 256 214 1430 1064

6 16 20.18 12.70 152 106 1184 645

7 8 2.75 1.56 31 18 186 72

7 10 160.43 115.66 1221 1055 10774 6178

7 12 382.96 458.22 2993 2984 22798 22319

7 14 89.25 84.69 810 779 4529 4001

7 16 108.64 97.58 1028 954 5487 4590

8 8 11.05 0.12 33 1 839 1

8 10 482.70 412.29 3355 3105 25532 19276

8 12 483.15 286.16 3378 2229 24746 13719

8 14 318.54 273.17 2693 2323 15435 11749

8 16 112.29 84.31 479 428 4759 2692

9 8 11.75 1.03 64 8 874 38

9 10 704.86 621.47 5634 4801 37552 29943

9 12 731.08 311.55 4079 2062 38351 14248

9 14 534.16 568.15 4411 4223 24420 23509

9 16 1376.74 261.22 5249 1989 72143 9450

I2 denotes the total number of iterations for Algorithm 2.

Both the algorithms have been stopped when accuracyε = 10−1 has been reached.
In the computations it has been chosen the following value forδ

δ = max{0.01 | UB |,0.01},
however it is possible to consider alternative choices, such as an adaptive update
of this value. A small value ofδ may cause the algorithm to need a lot of iterations
before starting a local search leading to a vertex ofP with function value equal
to UB, which is then cut off. Therefore, in some cases the value ofδ should be
increased. For instance, if the algorithm is generating many points with function

128 MARCO LOCATELLI AND NGUYEN V. THOAI

Table III. CPU times, memory requirements and number of iterations
for functionf4

n m T1 T2 M1 M2 I1 I2

5 8 1.17 0.28 11 4 140 16

5 10 1.38 0.43 11 7 145 24

5 12 6.19 3.33 80 44 452 229

5 14 1.94 0.70 18 12 135 36

5 16 3.53 4.60 38 38 236 225

6 8 7.43 5.08 95 71 609 389

6 10 12.60 8.33 151 144 927 559

6 12 9.89 9.24 144 139 637 534

6 14 24.15 21.79 282 280 1601 1336

6 16 63.11 31.61 572 260 3843 1778

7 8 8.15 4.22 77 48 598 214

7 10 268.13 243.53 2618 2420 17512 13802

7 12 332.27 304.77 3142 3034 19230 16568

7 14 101.19 96.20 852 795 5063 4496

7 16 233.73 225.23 2339 2269 12199 10995

8 8 15.60 0.11 33 1 1167 1

8 10 432.15 331.61 3543 2783 21706 15353

8 12 566.76 416.86 4993 3465 28544 20618

8 14 565.40 506.73 4528 4493 27117 21940

8 16 275.62 166.50 1167 1034 12178 6082

9 8 19.38 1.24 64 13 1473 46

9 10 1355.01 1268.29 10076 7904 68341 57714

9 12 864.09 804.53 4743 3599 44885 33745

9 14 1249.05 1304.46 7781 7699 51433 50582

9 16 441.41 331.30 2275 1860 17339 11513

value close toUB but greater thanUB + δ, so that no local search is started, then
δ should be increased in order to start at least one local search and, in case this
leads to a local minimum vertex with function value not greater thanUB, to cut
this vertex. On the other hand, if the value ofδ is too large, many local searches
are started leading to noninteresting local minima, i.e. local minima with function
value greater thanUB. In such a case it seems to be sensitive for the algorithm to
decrease the value ofδ.

Finally, we recall that only bisections have been employed. More sophisticated
subdivision rules should be tested in the future.

FINITE EXACT BRANCH-AND-BOUND ALGORITHMS 129

7. Conclusion

In this paper simplicial branch-and-bound algorithms for concave optimization
have been considered. After having introduced the concave optimization problem
and the basic structure of simplicial branch-and-bound algorithms, some modifica-
tions of the basic simplicial algorithms, consisting of local searches and concavity
cuts, have been introduced. The modified algorithm has been proven to be finite
if a given assumption holds. Since the assumption can not be guaranteed to hold
for general concave functions, conditions under which it certainly holds have been
presented. Moreover, some ideas have been discussed to deal with the cases in
which the conditions are not fulfilled. The ideas consist in modifying the objective
function, but only when, according to the information collected by the algorithm,
this becomes necessary in order to ensure finiteness. All that has led to the descrip-
tion of a new algorithm which has been proved to be finite for general concave
functions. Some preliminary computational results are presented aiming at show-
ing that the proposed modifications are not only of theoretical interest since they
enforce finiteness, but are also of practical interest. The preliminary computations
seem to show that the modified algorithm has a lower dependency on the predefined
accuracy, and that it often outperforms the basic simplicial algorithm when applied
to randomly generated problems.

Finally, we also point out that, even if only simplicial branch-and-bound al-
gorithms have been considered, it seems to be possible to extend the ideas presen-
ted here to other branch-and-bound algorithms. Indeed, the modifications of con-
vergent simplicial branch-and-bound algorithms, that we have introduced here in
order to enforce finiteness, i.e. concavity cuts and, when necessary, updates of the
objective function, are not dependent on the geometrical objects (simplices, cones,
rectangles) through which the feasible region is partitioned.

References

1. Benson, H.P. (1985) A finite algorithm for concave minimization over a polyhedron,Naval
Research Logistics Quarterly32: 165–177.

2. Benson, H.P. and Sayin, S. (1994) A finite concave minimization algorithm using branch and
bound and neighbor generation,Journal of Global Optimization, 5: 1–14.

3. Benson, H.P. (1995) Concave minimization: theory, applications and algorithms in R.Horst,
P.Pardalos (eds.),Handbook of Global Optimization, pp. 43–148, Kluwer Academic Publishers,
Dordrecht, The Netherlands

4. Hamami M., Jacobsen S.E., (1988) Exhaustive nondegenerate conical processes for concave
minimization on convex polytopes,Mathematics of Operations Research13, 479–487.

5. Horst R., (1976) An algorithm for nonconvex programming problems,Mathematical Program-
ming10: 312–321.

6. Horst R., (1984) On the global minimization of concave functions. Introduction and survey,
Operations Research Spektrum6: 195–205.

7. Horst R., Thoai N.V., (1988) Modification, implementation and comparison of three algorithms
for globally solving concave minimization problems,Computing, 42: 271–289

130 MARCO LOCATELLI AND NGUYEN V. THOAI

8. Horst R., Pardalos P.M. and Thoai N.V., (1995) ‘Introduction to global optimization’, Kluwer
Academic Publishers, Dordrecht, The Netherlands

9. Horst R. and Tuy H., (1996)Global optimization: deterministic approaches, (third edition),
Springer-Verlag Berlin Heidelberg New York (1996)

10. Nast M., (1996) Subdivision of simplices relative to a cutting plane and finite concave
minimization,Journal of Global Optimization, 9: 65–93

11. Papadimitriou C.H., Steiglitz K., (1982)Combinatorial optimization: algorithms and complex-
ity, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

12. Pardalos P.M., Rosen J.B., (1986) Methods for global concave optimization: a bibliographic
survey,SIAM Review26, 367–379.

13. Pardalos P.M., Schnitger G., (1988) Checking local optimality in constrained quadratic
programming is NP-hard, Operations Research Letters, 7: 33–35.

14. Shectman J.P., Sahinidis N.V., (1998) A finite algorithm for global minimization of separable
concave function,Journal of Global Optimization12: 1–36

15. Tam B.T., Ban V.T., (1985) Minimization of a concave function under linear constraints,
Economika i Mathematicheskie Metody21: 709–714, in Russian

16. Tuy, H. (1991) Concave programming under linear constraints,Soviet Mathematics5: 1437–
1440

17. Tuy, H. Effect of the subdivision strategy on convergence and efficiency of some global
optimization algorithms,Journal of Global Optimization, 1: 23–36

18. Tuy, H. (1991) Normal conical algorithmfor concave minimization over polytopes,Mathemat-
ical Programming51: 229–245

